Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clinics ; 76: e2904, 2021. tab, graf
Article in English | LILACS | ID: biblio-1350626

ABSTRACT

OBJECTIVES: To investigate the efficacy and potential molecular mechanism of Huangkui capsule in combination with leflunomide (HKL) for the treatment of immunoglobulin A nephropathy (IgAN) METHODS: IgAN rat models were constructed by treating rats with bovine serum albumin, lipopolysaccharide, and tetrachloromethane. Th22 cells were isolated from the blood samples of patients with IgAN using a CD4+ T cell isolation kit. The expression levels of the components of the TGF-β1/Smad3 signaling pathway, namely, TGF-β1, Smad2, Smad3, Smad4, and Smad7, were detected using quantitative reverse transcription polymerase chain reaction. Cell proliferation was determined using the MTT assay, cell viability was determined using the WST 1 method, and the chemotaxis of Th22 cells was observed using the wound healing assay. Changes in the histology of the kidney tissues were analyzed using hematoxylin and eosin staining. RESULTS: Compared with IgAN rats, the rats subjected to HKL treatment showed good improvement in kidney injuries, and the combined drug treatment performed much better than the single-drug treatment. In addition, following HKL treatment, the viability, proliferation, and chemotaxis of Th22 cells dramatically decreased (*p<0.05, **p<0.01, and ***p<0.001). In addition, CCL20, CCL22, and CCL27 levels decreased and the expression of the key components of the TGF-β1/Smad3 signaling pathway was downregulated in IgAN rats and Th22 cells (*p<0.05, ***p<0.001). CONCLUSIONS: By targeting the TGF-β1/Smad3 signaling pathway, HKL treatment can improve kidney injury in IgAN rats as well as the excessive proliferation and metastasis of Th22 cells.


Subject(s)
Humans , Animals , Rats , Drugs, Chinese Herbal/pharmacology , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Leflunomide/pharmacology , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/drug therapy , Signal Transduction , Kidney/metabolism
2.
Clinics ; 72(2): 95-102, Feb. 2017. tab, graf
Article in English | LILACS | ID: biblio-840044

ABSTRACT

OBJECTIVES: Henoch-Schönlein purpura nephritis and immunoglobulin A nephropathy are two diseases with similar clinical presentations but very different prognoses. Transforming growth factor β1 and monocyte chemoattractant protein-1 have been associated with the development of tissue fibrosis. We examined the development of tubulointerstitial fibrosis and its relationship with Transforming growth factor β1 and monocyte chemoattractant protein-1 expression in these patients. METHODS: Renal tissue samples were collected by renal biopsy from 50 children with Henoch-Schönlein purpura nephritis and 50 children with immunoglobulin A nephropathy. Hematoxylin and eosin and Masson's trichrome-stained tissues were examined using light microscopy. Tubulointerstitial fibrosis was graded using the method described by Bohle et al. (1). The immunohistochemical detection of Transforming growth factor β1 and monocyte chemoattractant protein-1 expression was correlated with the tubulointerstitial fibrosis grade. Clinical Trial registration number: ZJCH-2012-0105. RESULTS: Transforming growth factor β1 and monocyte chemoattractant protein-1 expression in the renal tissues was significantly greater in the patients with immunoglobulin A nephropathy than in the patients with Henoch-Schönlein purpura nephritis (both p<0.001). The immunoglobulin A nephropathy patients had a higher tubulointerstitial fibrosis grade than the Henoch-Schönlein purpura nephritis patients (p<0.001). The tubulointerstitial fibrosis grade was in accordance with the Transforming growth factor β1 and monocyte chemoattractant protein-1 expression levels in both diseases (both p<0.001). CONCLUSION: Transforming growth factor β1 and monocyte chemoattractant protein-1 expression was associated with the development of immunoglobulin A nephropathy and Henoch-Schönlein purpura nephritis. Further studies are needed to better evaluate this association.


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Adolescent , IgA Vasculitis/metabolism , Chemokine CCL2/metabolism , Transforming Growth Factor beta1/metabolism , Glomerulonephritis, IGA/metabolism , Kidney Tubules/metabolism , Prognosis , IgA Vasculitis/pathology , Fibrosis , Glomerulonephritis, IGA/pathology , Kidney Tubules/pathology
3.
Clinics ; 67(7): 697-703, July 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-645439

ABSTRACT

OBJECTIVES: The objectives of our study were as follows: 1) to analyze the prognostic value of macrophage infiltration in primary IgA nephropathy (IgAN) and 2) to study the relationship between macrophages and other factors associated with the development of renal fibrosis, including mast cells, TGF-β1, α-SMA and NF-kB. METHODS: We analyzed 62 patients who had been diagnosed with IgAN between 1987 and 2003. Immunohistochemical staining was performed with monoclonal antibodies against CD68 and mast cell tryptase and polyclonal antibodies against TGF-β1, α-SMA and NF-kB p65. We also used Southwestern histochemistry for the in situ detection of activated NF-kB. RESULTS: The infiltration of macrophages into the tubulointerstitial compartment correlated with unfavorable clinical and histological parameters, and a worse clinical course of IgAN was significantly associated with the number of tubulointerstitial macrophages. Kaplan-Meier curves demonstrated that increased macrophage infiltration was associated with decreased renal survival. Moreover, the presence of macrophages was associated with mast cells, tubulointerstitial α-SMA expression and NF-kB activation (IH and Southwestern histochemistry). In the multivariate analysis, the two parameters that correlated with macrophage infiltration, proteinuria and tubulointerstitial injury, were independently associated with an unfavorable clinical course. CONCLUSION: An increased number of macrophages in the tubulointerstitial area may serve as a predictive factor for poor prognosis in patients with IgAN, and these cells were also associated with the expression of pro-fibrotic factors.


Subject(s)
Adult , Female , Humans , Male , Actins/metabolism , Glomerulonephritis, IGA/pathology , Macrophages/physiology , NF-kappa B/metabolism , Biopsy , Biomarkers/metabolism , Fibrosis , Glomerulonephritis, IGA/metabolism , Histocytochemistry , Kidney Tubules/pathology , Macrophages/pathology , Proteinuria/pathology , Transforming Growth Factor beta1/metabolism
4.
Clinics ; 67(4): 363-373, 2012. ilus, tab
Article in English | LILACS | ID: lil-623116

ABSTRACT

OBJECTIVES: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. METHODS: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. RESULTS: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-Inositol, lactate, L6 lipids ( = CH-CH2-CH = O), L5 lipids (-CH2-C = O), and L3 lipids (-CH2-CH2-C = O) as well as lower levels of β -glucose, α-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. CONCLUSIONS: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk groups in our research. These results offer new, sensitive and specific, noninvasive approaches that may be of great benefit to immunoglobulin A nephropathy patients by enabling earlier diagnosis.


Subject(s)
Adolescent , Adult , Female , Humans , Young Adult , Glomerulonephritis, IGA/diagnosis , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Biopsy , Biomarkers/analysis , Case-Control Studies , Discriminant Analysis , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/pathology , Kidney/pathology , Least-Squares Analysis , Protons , Sensitivity and Specificity
5.
Yonsei Medical Journal ; : 610-615, 2011.
Article in English | WPRIM | ID: wpr-33259

ABSTRACT

PURPOSE: Deposition of polymeric IgA1 in the kidney mesangium is the hallmark of IgA nephropathy, but the molecular mechanisms of IgA-mediated mesangial responses and inflammatory injuries remain poorly understood. We hypothesize that Toll-like receptor 4 (TLR4) is involved in IgA-induced mesangial cell activation. MATERIALS AND METHODS: Mouse mesangial cells were stimulated with lipopolysaccharide (LPS) (1 microg/mL), IgA (20 microg/mL), or both, and TLR4 expression was measured by real time RT-PCR and Western blot. Intracellular responses to LPS or IgA were assessed by Western blot for ERK1/2, JNK, p38 MAP kinases (MAPKs), Ikappa-Balpha degradation and fibronectin secretion. MCP-1 secretion was assessed by ELISA. Small interfering RNA (siRNA) of TLR4 was used to confirm that the effects were caused by TLR4 activity. RESULTS: LPS- or IgA-treatment upregulated the levels of TLR4 mRNA and protein in cultured MMC at 24 h. LPS and IgA induced rapid phosphorylation of MAPKs, but degradation of Ikappa-Balpha was observed only in LPS-treated MMC. LPS, but not IgA, induced increased secretion of MCP-1 and fibronectin at 24 h or 48 h. Combined LPS and IgA treatment did not cause additional increases in TLR4 mRNA and protein levels or Ikappa-Balpha degradation, and MCP-1 and fibronectin secretions were less than with LPS alone. LPS- or IgA-induced TLR4 protein levels and MAPK activation were inhibited by transfection with TLR4 siRNA. CONCLUSION: These results indicate that the activation of MAPKs and MCP-1 secretion are mediated by TLR4, at least in part, in IgA-treated mesangial cells. TLR4 is involved in mesangial cell injury by induction of pro-inflammatory cytokines in IgA nephropathy.


Subject(s)
Animals , Mice , Chemokine CCL2/metabolism , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibronectins/metabolism , Glomerulonephritis, IGA/metabolism , I-kappa B Proteins/metabolism , Mesangial Cells/metabolism , Mice, Transgenic , Phosphorylation , RNA Interference , RNA, Messenger/metabolism , Signal Transduction , Toll-Like Receptor 4/antagonists & inhibitors
6.
The Korean Journal of Internal Medicine ; : 40-47, 2005.
Article in English | WPRIM | ID: wpr-71014

ABSTRACT

BACKGROUND: Transforming growth factor-beta (TGF-beta) stimulates renal fibrosis in various renal diseases including IgA nephropathy. METHODS: We examined whether immunoglobulin A (IgA) stimulated TGF-beta1 synthesis in human mesangial cells (MCs), and whether this effect was mediated through the protein kinase C (PKC) pathway. We measured the intraglomerular TGF-beta1 mRNA expression by using competitive RT-PCR, and this was compared with various parameters in IgA nephropathy patients. RESULTS: The IgA aggregate increased the TGF-beta1 mRNA expression in MCs, while this expression was not affected by the culture media or IgG aggregate. Phorbol 12-myristate 13-acetate and calphostin C did not influence the TGF-beta1 mRNA expression that was increased by the IgA aggregate. Intraglomerular TGF-beta1 mRNA expression was significantly correlated with creatinine clearance (r=-0.764, p=0.027), daily proteinuria (r=0.781, p=0.022), serum creatinine (r=0.884, p=0.004), and tubulointerstitial changes (r=0.809, p=0.015). Glomerular TGF-beta1 mRNA expression was associated with an increased tendency for glomerulosclerosis (r=0.646, p=0.084). After 4 years, patients with a high expression of intraglomerular TGF-beta1 mRNA showed a tendency for an decrease of their renal function. CONCLUSION: The IgA aggregate increased TGF-beta1 mRNA expression in MCs, and this was independent of the PKC pathway. The evaluation of intraglomerular TGF-beta1 mRNA expression could be useful in predicting the progression of IgA nephropathy.


Subject(s)
Female , Humans , Male , Cells, Cultured , Glomerular Mesangium/cytology , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/pharmacology , Proteins/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL